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Abstract 

An automated system for testing and performance 
evaluation of the CDF Silicon Vertex Detector (SVX) data 
acquisition electronics is described. The SVX data acquisition 
chain includes the Fastbus Sequencer and the Rabbit Crate 
Controller and Digitizers. The Sequencer is B programmable 
device for which we developed a high level assembly 
language. Diagnostic, calibration and data acquisition 
programs have been developed. A distributed software 
package was developed in order to operate the modules. The 
package includes programs written in assembly and Fortran 
languages that are executed concurrently on the SVX 
Sequencer modules and either a microvaw or an SSP. Test 
software was included to assist technical personnel during the 
production and maintenance of the modules. Details of the 
design of different components of the package arc reported. 

I. INTRODUCTION 

The development of the software package and assembly 
language for the tests and operation of the Silicon Vertex 
Detector readout electronics components being commissioned 
for the CDF92 nm will be discussed. The basic components of 
the SVX DAQ are a Fastbus Sequencer, a Rabbit Crate 
Controller and a Digitizer module. The function and 
arrangement of these modules will be briefly summarized 
here, sod arc described in more detail in other contributions to 
tbis conference[l,2]. 

The SVX detector contains over 46,000 readout chaonels 
divided into 24 sections called wedges. Each wedge is 
connected to a separate Digitizer, which resides in a Rabbit 
crate mounted on the CDF detector. Four Rabbit crates hold 6 
Digitizers each. The Digitizer is responsible for driving and 
receiviog analog and digital signals to the detector. The digital 
signals it sends are used to control the operation of switches on 
the wstom designed VLSI chips called SVX Rev D integrated 
circuit[3](SVXIC) that arc connected to the detector. The 
analog signals it sends are used to inject charge into the 
detector. The analog signal it receives is the pulse height of a 
charged particle traversing the detector, which is sent with a 
digital description of the location of the channel that was bit. 
In each of the four Rabbit crates there is one Controller, an 
interface between the Digitizers sod the Sequencer, which 
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resides in B Fastbus crate in the Control Room. There is one 
Sequencer connected to each Controller. 

The Sequencer contains a 16k data memory and a 16k 
program memory, along with a microsequencer chip, 
conditional control logic, and B 100 MHz clock. It sends data, 
fimction codes, and patter” timing signals through cables that 
txe directly connected to the Controller. The Sequencel’s data 
space is divided into 8 blocks, 6 of which correspond directly 
to the Digitizers in the crate. In the current configuration, the 
seventh block is not used, and the eighth block holds data from 
the Controller. I” other possible configurations, the seventh 
and eighth blocks could be dedicated to two more Digitizers 
placed in the Rabbit crate. Each of these blocks has associated 
with it an End Of Buffer(EOB) register which keeps track of 
the last location in its block to which data has been written. 
The Controller drives the pattern timing signals onto the 
backplane ofthe Rabbit crate, where they are picked up by the 
Digitizers and driven to the wedges. If a function code is 
presenf the Controller int.zprets it as B write or read of one of 
its own registers, of a register in B Digitizer in a designated 
slot, or of a register in all the Digitizers in the mate, performs 
the appropriate function, and sends the data back to the 
Sequencer. Three of the top five bits of the data indicate the 
slot location of the module t?om which the data came. The 
Sequencer uses these bits to direct Ox data to one of its eight 
data blocks. 

II. CONTROL AND TESTING OF DAQ MODULES 

A. Operation and Control Uliliiies 

The degree of complexity of the three modules residing on 
different backplane buses made it necessary to design a 
sohare package which made common operations easily 
accessible, and would also automate the testing procedures as 
much as possible. The package, called SVX-Control, is 
written in Fortran, since we wanted to use the CDF Fastbus 
subroutines that were programmed in Fortran. We use the 
Uipack user interface package[4] to make the program me”“- 
driven, so that technical personnel and the designers of the 
devices can quickly learn to use the program. 

The top men” allows control of all system functions 
necessary during normal runtime operation. The most 
straightforward operation is writing and reading of the 
Sequencer’s CSR and data registers; therefore we provide 
options that allow single writes and reads to CSR register and 
block writes and reads to the data registers, since this is how 
these registers are normally accessed In all write operations, 



a readback is also performed and any mismatches are reported 
One oan also BCC~SS the Controller and Digitizer registers via 
addresses mapped into the Sequencel’s CSR space but the 
procedure is different. In this case the desired function code is 
stored in the Front End Crate control Register in the 
Sequencer. Then a Fastbus write is made to the CSR address 
corresponding to the Digitizer or Controller register to be 
accessed, which causes the function code and data to be sent to 
the Controller. If the function is a read, the data word sent 
with the Fastbus write is ignored, and the data word read is 
sent to the appropriate data block in the Sequencer. One then 
has to perform a Fastbus read of that data space location to get 
the data. In the program, block reads of the EOB registers 
before and after the read code was executed are compared to 
determine the location of the data. These operations are 
transparent to the user, so that writes and reads of the 
Controller and Digitizer registers can be performed by 
selecting the same options used to write and read regular 
Sequencer CSR space registers. Other options are provided to 
read the supply voltages of the Rabbit crate, download the 
Sequencer progmm memory, and change the Fastbus primary 
address of the Sequenoer to allow communication with any 
other Sequerlcers in the system. 

Many functions, such as running the Sequencer, require 
only that the user write a certain value to a single CSR 
register. We did not want to have separate menu options for 
all these kinds of timctions, but neither did we expect that the 
average user would know where to write which values. 
Therefore we made extensive use of the ability of Uipack to 
accept command files. These files are written in standard text 
format and are simply a list of commands in the order that they 
could be selected from the menus. Files were made for the 
simple kinds of functions mentioned above, so that the user 
will enter something like @run to run the Sequencer. 
Another benefit of using command files during development 
of the modules is that we can quickly update them if the 
address of any CSR registers or the value to write to them 
changes. We also set up more complicated command tiles that 
call some combination of the simpler command tiles. For 
instance, the command @rgrun prognome resets the 
Sequencer, zeroes its Program Counter, downloads the 
programprognome, zerws the EOB registers, and runs the 
program. Use of the command files saves time, eliminates 
careless mistakes, and allows users to exercise the full utility 
of the DAQ modules without having to know any of the 
details. 

B. Testing Utilities 

The test portion of the package allows us to access and 
automatically pinpoint faults in the boards by running a series 
of automated tests. It was developed in parallel with the 
prototyping of tlx modules, so that when any error was found 
011 a board that the test programs failed to detect, the prognms 
were updated in an iterative process so that most of the errors 
that we have seen in the original DAQ modules will be 
detected and reported iftbey occur in newer modules. 

Some errors ax reported to the screen and all errors are 
written to a log file that is opened upon entering the test menu 
The simplest tests are reads, writes and comparison of all the 
Sequencel’s data and CSR space registers. The user can 
choose a pattern of sequential numbers, wanting ones, walking 
zeroes, random data, or user de&cd data words to be written. 
The location of any mismatches, the value written and the 
value read are written to tie log file. Another test checks if 
the Block Transfer (BT) mode ofreading out the Sequencer is 
working correctly. In BT mode, when a Fastbus block read of 
one of the data blocks is execute& the Sequencer generates a 
Fastbus SS=2 code and stops sending data when the address 
being read exceeds the EOB register content. For the test, we 
perform such a read for all possible values of the EOB 
contents, and report to the log tile if SS=2 is not generated or 
if the number of words transferred does not agree with the 
EOB content. Still another test causes errors to occur and 
checks that the wrrec.t bits in the error register are set and that 
the error can be reset properly. 

The correct functioning of the microsequencer chip and 
conditional control logic is tested by downloading a microcode 
program that executes all 16 of the instruction codes in the 
case that the condition was true or false. If everything works, 
the microcode program finishes at a particular location that the 
test progmmre~gnizes as meaning successful completion. If 
an error occurs, the microcode progmm fishes at a different 
location. The test program reports the error associated with 
this location to the log file, eliminates the microcode 
instructions that produced the error, and runs the microcode 
program again. This is repeated until the “successtil 
completion” line is reached. 

The VAX and QPI system used for most of these tests was 
in certain cases unable to provide a completely effective 
means for testing the Sequencer. For instance, the QPI 
temporarily drops the connection signal after a certain number 
of data words are transferred from any Fastbus device, thus 
breaking down the transfer of large data blocks into smaller 
pieces. Since the Sequencer interprets each connection to be a 
separate transaction, the SS=2 code was not issued for some 
BT mode reads that were made over two connection cycles. 
Also, the speed of data transactions between the VAX and 
QPI is much slower than between two devices in a Fastbus 
crate. One test we wanted to perform was to attempt to read 
all undefmed CSR space registers in the Sequencer and make 
sure the SS=7 Fastbus code was issued, but the test would take 
several weeks since well over 4 billion locations allowed by 
the Fastbus 32-bit address field were undefined. During 
normal runtime operation, tlte slat Scanner Processor (SSP) is 
the device that will be used to read out the Sequencer, so in 
each of these cases, we wrote programs that could be executed 
on the SSP. In the first case, the proper BT mode of 
Sequencer readout was verified, and in the latter case, the 
restricted test was able to be executed in less than two days. 
Tests such as these have not yet been absorbed into the 
SVX_Control testing environment, but it is anticipated that 
they soon will be. 



Other menu options can be selected to test the Conboller 
and Digitizers. These modules are accessed by the Sequencer 
either through the Fastbus procedures described above, or by 
running a microcode program in which the 32 bits devoted to 
sending the data and function codes to the crate are properiy 
specified. One test performs writes and reads to all the 
Digitizer and Controller registers using Fastbus, compares the 
results, and reports any mismatches. It also checks that the 
data are being sent to the right block in the Sequencer’s data 
space. One can select whether to test a digitizer in a particular 
slot or to scan all the digitizers in the crate. Or one can opt to 
download a microcode program that performs all the writes 
and reads to the Controller and Digitizers at the maximum 
transfer rates allowed by the design. 

Besides its normal operation of digitizing the analog signal 
from the detector or the voltage of the Rabbit crate, the 
Digitizer also allows one to select one of its three DACs as 
input to its ADC for diagnostic purposes. Two test programs 
make use of this feature. The first downloads a microcode 
program that sets aU possible values for each of the DACs and 
causes the ADC to digitize the signals for each value. In one 
mode, a comparison is made between the DAC input and ADC 
output, and an error is reported only ifthe difference exceeds a 
specified value. In another mode, the microcode program is 
executed multiple times, the mean and the standard deviation 
for each value are calculated, and the results are written to a 
histogram. The second program allows one to select the DAC 
to use as input to the ADC and the value to write to the DAC, 
then digitizes the signal multiple times. The result can be 
printed on screen or used to Ii11 a histogram. Tbe user can 
interrupt the program at any time to change the DAC selection 
or value. 

Some mcxe options available in the SV?(-Control package, 
such as its program and data space display facilities and its 
ability to act as a file senwr and manager of the microcode, 
will be discussed later. Other functions that can be performed, 
such as interfacing with other Fastbus or Camac modules, are 
beyond the scope of this paper. 

III. SYSTEM MICROCODE STRUCTURE 

A. Description of the k&eta-Assembler 

The Sequenca’s microsequencer chip executes g&bit wide 
instruction words, divided into 3 equal parts that provide 
pattern timing and data latching signals, crate data and control 
codes, and microsequencer conditional control logic and 
branching instructions. Use of the HiLevel Assembly 
Language Environment[5](Hale), a relocatable macm meta- 
assembler program, allowed us to defme swrce program 
definitions of instruction formats for our application. The 
objective is for any user to be able to write a program using 
only logical mnemonic terms for the desired functions, without 
having to know anything about the format of the Sequencer 
control word. The necessary file structures naturally divide 
into three forms: the deftition files, that specify the format of 
the microcode work and the value of any us&l symbols; the 

SOUTC~ files, that contain the sets of macro calls used to write 
the actual programs; and the format tiles, that store the 
canpiled microcode in a format that can be easiiy downloaded 
in to the device(in this CBSB, ASCII). 

The Hale definition file for SVX programming is built on 
four levels. The lowest level is to assign mnemonic names to 
valid entries in all logical fields of the control memory 
formats. For example, the microsequencer instructian codes 
were assigned the standard AM2910 names, the crate control 
function codes were assigned names such as WRITE or 
BROAD to execute writes to a single digitizer or broadcasts to 
the crate, and the digitizer registers were given names such as 
OFFDAC for the offset DAC register. 

The next level is to set up formats corresponding to each 
logical field of the control memory. Typically, each format 
specifies only one logical field, with the remaining bits being 
treated as “don’t care” bits that can be overlaid by other 
instructions. We also assigned default values to each of these 
fields so that if they aren’t specified in a swrce code program 
they will be compiled correctly anyway. 

At the next level, pipeline macra are set up. There are 
two kinds of macros in Hale. In both kinds, the macm is 
specified with sane number of call parameters. Within the 
deftition of the macro, these caU parameters can be placed in 
the field of format instructions, or used as call parameters for 
other macros. When an ordinary macm is calle& all 
microcode words specified within its d&&ion are generated 
But when a pipeline macm is called its instructions are 
activated, but no code is immediately generated Most of the 
pipeline macrca consisted of a call to a single format 
statement, with the call parameters specified in a natural order 
for the user, even though the order may differ f?om the actual 
bit arrangement. Thus many pipeline macms can be called 
before generating a line of microcode. When a command 
called PADPIPE is executed, aU the pipeline macms that have 
been called generate a line of microcode that is overlaid with 
the code from the other pipeline macms to create one 96-bit 
microcode word 

At the highest level, we set up system control macms to 
control the Analog and Digital Switches of the SVXIC chip 
called ADSWINST, where IN&T is replaced by one of the 16 
mnemonic names of the microsequencer instructions. These 
macra have twelve parameter fields that allow the 
specification of the entire instruction word We arranged the 
parameter fields so that the four that are most commonly used 
are specified first. The remaining fields can be left 
unspecified and the corresponding bits will be set to default 
values. The macm itself calls all of the pipeline macms with 
the call parameters that are specified, then executes the 
PADPIPE instruction to overlay the code. Depending on the 
characteristics of I&S?“, sane extra logic may be applied to 
handle unspecified tields. For example, if no condition is 
specified for a conditional instruction, the bit corresponding to 
the unconditional line of the microsequencer is set, to case 
the inst~ction to be executed as if it were always true. We 
also introduced warning messages that are printed to the 
screen during compile time if illegal chip operations are 



specified in the swrce code. The microcode is still generated 
in this case, but we have advised users against running 
programs that result in these warnings. 

B. Logical Division of the System Code 

At any given time, a user is interested in only B few of the 
chip operations when modifying the system microcode; 
therefore we did not want all the other chip operations to have 
to be continually respecified HALE has a relocatable linker 
utility that allows separate modules to be compiled, then 
linked together later in any order desired So we divided the 
entire program structure into several separate fimctional units, 
wrote the scmrce files for each, compiled them, and placed 
them in an arca accessible by aU the members of the group. A 
rough description of the units necessary for all calibration and 
DAQ programs is es follows: 

CHIP INITIALIZE: Perform a dummy readout to reset 
the chip. 
WRITE CHIP ID: Write a 4-bit identification number to 
each of the filtecn chips in B wedge, and set the mode of 
OpdiOlL 
RESET AND INTEGRATE: Put the chip switches into 
a Reset state, then select the sampling of a new event and 
store it on capacitors. 
LATCH: Latch the data stored on the capacitor. 
READOUT: Depending on readout mode selected scan 
all the channels and either read out all channels, or just 
those with hits above an internal threshold 

In addition to the operations on the SVXIC chip, there are 
additional sets of instructions used to control registers in the 
Digitizers. These are as follows: 

INITIALIZE: Set the gain register, charge injection and 
offset DACs in the Digitizer to desired initial values; 
read these values back into the data stream. 
INJQ: Vary the value of the Veal DACs on an event-by- 
event basis (this is used for calibration only). 
READ DIGITIZER: Read out the current value of all the 
Digitizers’ registers into the data stream. 

One last set of instructions is needed to control the 
pmgram flow in the Sequencer based on the sipals from 
higher level systems: 

SYNCHRONIZE: Select Reset and Integrate cycle if a 
signal called Clear and Strobe is received, or select Latch 
and Readout if a signal called Start Scan is received(for B 
description of these signals, please consult reference 1). 
The chip is held in B Partial Reset state during this time, 
meaning that the charge collected on the capacitors in the 
previous Reset and Integrate cycle is held in place. 

Most of these sets of instructions cart be set up to work in 
all readout modes, and no further changes can be made that 
enhance performance of the chip. However, some others 
require precision tuning. In order to allow such tuning of parts 
of the acquisition cycle without requiring *e-specification of 
the other parts, we have designed each of the sets of 
instructions listed above to be fully modular by providing 
labels designatiag entry and exit points at the beginning and 
end of each set. Afier fme-tuning and compiling one set of 

instructions, the user then links with the other precompiled 
modules to regenerate the complete acquisition cycle. 

The particular implementation of this utility is dependent 
on the chip function to be performed The most general state 
transition diagram is shown in figure 1. By design, the most 
straightforward application is for real event acquisition, in 
which case all the modules listed above are linked The only 
restric.tion on the order is that the Initialize module be tirst. 
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Figure I. Typical order in which the Hale relocatable modules 
are executed. 

For calibration programs, slightly more sophisticated 
means must be employed. For example, a leakage current 
calibration is performed by varying the integration time. 
Assuming the leakage current is constant, its magnitude is 
simply the change in charge accumulated on the capacitor 
divided by the change in the integration time. One can just 
modify the integration module to produce several different 
integration times, then link it with the other modules in the 
package. 

Gain calibration is performed by computing the change in 
the readout pulse height divided by the amount of charge 
injected. This is a quality measurement for all channels, so 
every channel is read wt. Threshold calibration consists in 
determining the amount of charge that must be injected in 
order to cause a given channel to be above the chip’s internal 
threshold 50% of the time. In both cases. the variable quantity 
is the charge injection. AU that is necessary is to set up an 
INJQ module for each of these, and link the other modules 
together, with latch-all readout for gain; latch sparse, for 
threshold 

Iv. FORTRAN UTILITIES FOR MICROCODE 
MANAGEMENT 

A. File server in SVX_Confrol 

In order for all users to be able to compile and link the 
progrpams, we set up command files and defmed symbols to 
execute them. A set of all the modules listed in the previous 
sections was kept in a restricted area on disk. Members of the 



group had read access only to this area If a user wanted to 
modify one of the modules, he could copy it to a separate work 
area, change it, and compile and reline a new microcode 
program that would also be placed in the work area. There 
were two problems with this procedure. The fust is that the 
user would have to know which modules to link and the 
correct order in which to link them to generate the appropriate 
program. The second is that several users may be modifying 
the same programs in the same directory. We solved these 
problems by implementing a file server facility from a separate 
mmu in the SVX Control environment. Upon entering the 
menu for the first time, the user executes a “new user” option. 
This option copies a complete set of the modules to the work 
area, but appends the username to the end of each filename. 
Files that contain the list of modules to be linked in order to 
generate a given calibration program are also created Then 
the user chooses the kind of calibration program to be 
modified and is presented with a list of the modules that can 
be modified After selecting whichmodules to modify, an edit 
session is created for each selection. The user is asked 
whether to compile the modified modules and link a new 
microcode program. If so, the appropriate command files are 
called. The name of the microwde file is requested, and the 
file is written to a library area where is can immediately be 
downloaded and executed by SVX-Control. In this way the 
user doesn’t have to know anything about the names of 
individual tiles or the order in which to link them; it is all done 
automatically for him. 

B. Display utilities in SVX-Control 

Prior to the introduction of the Fastbus DAQ modules, 
there was a simpler system which used the Camac system. AU 
the microcode for the Camac sequencer was done in a binary, 
column-oriented text file. The functionality of that module 
was less than the Fastbus Sequencer, so the number of bits to 
specify were fewer, but to the average user the file was just a 
me.mingJess collage of zeroes and ones. There was no means 
to generate these tiles Tom higher level smu~e code, so any 
changes had to be done directly in the microcode file. 
Nevertheless, several people in the group became quite adept 
at recognizing the chip operations that were performed by each 
binary pattern Therefore we added an option in SVX_Control 
that would display the pats of the microsequencer program 
that had analogous functions in the Camac sequencer in the 
familiar binay pattern to which some people had become 
accustomed Other display options are available that break the 
%-bit words into the logical fields, displayed according to the 
field width in birwy, octal, or hexadecimal format. 

C. Pattern plolier 

A standalone Fortran program was written that can read the 
forrttetted microcode files, interpret the microsequencer 
instruction codes, and generate timeline flow charts showing 
the pattern of timing signals that would be sent to the SVXIC 
chip when the program is run on the Sequencer. ‘I&s not only 

allows me to immediately spot logical flaws in the program 
structure, but also allows users with more experience with 
operating the SVXIC chip to quickly determine if the program 
will deliver a pattern that insures optimal operation of the chip. 
At the moment, the program generates the plots using the 
assumption that all condition codes are true. It is anticipated 
that in the near future the program can be interfaced with a file 
that specifies the timing of external signals sent to the 
Sequencer, so that conditions can be properly evaluated This 
will result in a fairly comprehensive simulation of the actual 
execution ofthe programs in the Sequencer. 

V. CONCLUSIONS 

The idea of a design of one sotlware package to operate 
and maintain three different hardware devices has already 
proven effective. We observed good error coverage, limited 
supervision during the test run and short repair time due to 
automatic identification of problem areas. The package 
helped to save a lot of debugging time in a highly complex 
data acquisition etwironment 

The management and structure of the assembly language to 
generate the microcode programs for operation of the SVXIC 
chip is such that any user who knows what switch timing to 
select is able to write, compile, and link such programs 
without knowing any of the details of the DAQ chain. This 
allowed for more attention to the operation of the detector 
without many people having to spend a lot of time 
understanding the Sequencer, Controller, and Digitizer 
modules. The same method could be applied to any other 
similar systems, and the existing assembly language could be 
ea.@ modified to work with future versions of the Sequencer, 
without any change noticeable to the user writing the system 
source programs. 
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